Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Climate change is expected to exacerbate the urban heat island (UHI) effect in cities worldwide, increasing the risk of heat-related morbidity and mortality. Solar reflective ‘cool pavement’ is one of several mitigation strategies that may counteract the negative effects of the UHI effect. An increase in pavement albedo results in less heat absorption, which results in reduced surface temperatures ( T surface ). Near surface air temperatures ( T air ) could also be reduced if cool pavements are deployed at sufficiently large spatial scales, though this has never been confirmed by field measurements. This field study is the first to conduct controlled measurements of the impacts of neighborhood-scale cool pavement installations. We measured the impacts of cool pavement on albedo, T surface , and T air . In addition, pavement albedo was monitored after installation to assess its degradation over time. The field site (∼0.64 km 2 ) was located in Covina, California; ∼30 km east of Downtown Los Angeles. We found that an average pavement albedo increase of 0.18 (from 0.08 to 0.26) corresponded to maximum neighborhood averaged T surface and T air reductions of 5 °C and 0.2 °C, respectively. Maximum T surface reductions were observed in the afternoon, while minimum reductions of 0.9 °C were observed in the morning. T air reductions were detected at 12:00 local standard time (LST), and from 20:00 LST to 22:59 LST, suggesting that cool pavement decreases T air during the daytime as well as in the evening. An average albedo reduction of 30% corresponded to a ∼1 °C reduction in the T surface cooling efficacy. Although we present here the first measured T air reductions due to cool pavement, we emphasize that the tradeoffs between T air reductions and reflected shortwave radiation increases are still unclear and warrant further investigation in order to holistically assess the efficacy of cool pavements, especially with regards to pedestrian thermal comfort.more » « less
-
null (Ed.)Abstract. The effects of atmospheric black carbon (BC) on climate and public health have been well established, but large uncertainties remain regarding the extent of the impacts of BC at different temporal and spatial scales. These uncertainties are largely due to the heterogeneous nature of BC in terms of its spatiotemporal distribution, mixing state, and coating composition. Here, we seek to further understand the size and mixing state of BC emitted from various sources and aged over different timescales using field measurements in the Los Angeles region. We measured refractory black carbon (rBC) with a single-particle soot photometer (SP2) on Catalina Island, California (∼70 km southwest of downtown Los Angeles) during three different time periods. During the first campaign (September 2017), westerly winds were dominant and measured air masses were representative of well-aged background over the Pacific Ocean. In the second and third campaigns (December 2017 and November 2018, respectively), atypical Santa Ana wind conditions allowed us to measure biomass burning rBC (BCbb) from air masses dominated by large biomass burning events in California and fossil fuel rBC (BCff) from the Los Angeles Basin. We observed that the emissions source type heavily influenced both the size distribution of the rBC cores and the rBC mixing state. BCbb had thicker coatings and larger core diameters than BBff. We observed a mean coating thickness (CTBC) of ∼40–70 nm and a count mean diameter (CMD) of ∼120 nm for BCbb. For BCff, we observed a CTBC of ∼5–15 nm and a CMD of ∼100 nm. Our observations also provided evidence that aging led to an increased CTBC for both BCbb and BCff. Aging timescales < ∼1 d were insufficient to thickly coat freshly emitted BCff. However, CTBC for aged BCff within aged background plumes was ∼35 nm thicker than CTBC for fresh BCff. Likewise, we found that CTBC for aged BCbb was ∼18 nm thicker than CTBC for fresh BCbb. The results presented in this study highlight the wide variability in the BC mixing state and provide additional evidence that the emissions source type and aging influence rBC microphysical properties.more » « less
An official website of the United States government
